Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

Q is empty.


QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(a(a(x1)))
B(b(x1)) → A(x1)
A(a(b(x1))) → A(x1)
A(b(a(x1))) → B(b(a(x1)))
B(b(x1)) → A(a(x1))

The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ Narrowing
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(a(a(x1)))
B(b(x1)) → A(x1)
A(a(b(x1))) → A(x1)
A(b(a(x1))) → B(b(a(x1)))
B(b(x1)) → A(a(x1))

The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B(b(x1)) → A(a(a(x1))) at position [0] we obtained the following new rules:

B(b(b(a(x0)))) → A(a(b(b(a(x0)))))
B(b(a(b(x0)))) → A(a(a(x0)))
B(b(b(x0))) → A(a(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
QDP
          ↳ QDPToSRSProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

B(b(x1)) → A(x1)
A(a(b(x1))) → A(x1)
A(b(a(x1))) → B(b(a(x1)))
B(b(b(a(x0)))) → A(a(b(b(a(x0)))))
B(b(x1)) → A(a(x1))
B(b(a(b(x0)))) → A(a(a(x0)))
B(b(b(x0))) → A(a(x0))

The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The finiteness of this DP problem is implied by strong termination of a SRS due to [12].


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
QTRS
              ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))
B(b(x1)) → A(x1)
A(a(b(x1))) → A(x1)
A(b(a(x1))) → B(b(a(x1)))
B(b(b(a(x0)))) → A(a(b(b(a(x0)))))
B(b(x1)) → A(a(x1))
B(b(a(b(x0)))) → A(a(a(x0)))
B(b(b(x0))) → A(a(x0))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))
B(b(x1)) → A(x1)
A(a(b(x1))) → A(x1)
A(b(a(x1))) → B(b(a(x1)))
B(b(b(a(x0)))) → A(a(b(b(a(x0)))))
B(b(x1)) → A(a(x1))
B(b(a(b(x0)))) → A(a(a(x0)))
B(b(b(x0))) → A(a(x0))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
B1(a(b(B(x)))) → A1(a(A(x)))
A1(b(b(B(x)))) → B1(a(A(x)))
A1(b(A(x))) → A1(b(B(x)))
A1(b(b(B(x)))) → A1(A(x))
B1(B(x)) → A1(A(x))
A1(b(a(x))) → B1(x)
B1(b(B(x))) → A1(A(x))
A1(b(a(x))) → A1(b(b(x)))
B1(b(x)) → A1(a(a(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)
A1(b(b(B(x)))) → A1(b(b(a(A(x)))))
B1(b(x)) → A1(a(x))
B1(a(b(B(x)))) → A1(A(x))
A1(b(A(x))) → B1(B(x))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
QDP
                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
B1(a(b(B(x)))) → A1(a(A(x)))
A1(b(b(B(x)))) → B1(a(A(x)))
A1(b(A(x))) → A1(b(B(x)))
A1(b(b(B(x)))) → A1(A(x))
B1(B(x)) → A1(A(x))
A1(b(a(x))) → B1(x)
B1(b(B(x))) → A1(A(x))
A1(b(a(x))) → A1(b(b(x)))
B1(b(x)) → A1(a(a(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)
A1(b(b(B(x)))) → A1(b(b(a(A(x)))))
B1(b(x)) → A1(a(x))
B1(a(b(B(x)))) → A1(A(x))
A1(b(A(x))) → B1(B(x))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 9 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
                          ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)
A1(b(b(B(x)))) → A1(b(b(a(A(x)))))
A1(b(A(x))) → A1(b(B(x)))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(A(x))) → A1(b(B(x))) at position [0] we obtained the following new rules:

A1(b(A(x0))) → A1(A(x0))
A1(b(A(x0))) → A1(a(A(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
QDP
                              ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
A1(b(A(x0))) → A1(a(A(x0)))
B1(b(x)) → A1(x)
A1(b(b(B(x)))) → A1(b(b(a(A(x)))))
A1(b(A(x0))) → A1(A(x0))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)
A1(b(b(B(x)))) → A1(b(b(a(A(x)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(b(B(x)))) → A1(b(b(a(A(x))))) at position [0] we obtained the following new rules:

A1(b(b(B(x0)))) → A1(b(A(x0)))
A1(b(b(B(y0)))) → A1(a(a(a(a(A(y0))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
QDP
                                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)
A1(b(b(B(x0)))) → A1(b(A(x0)))
A1(b(b(B(y0)))) → A1(a(a(a(a(A(y0))))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
QDP
                                          ↳ ForwardInstantiation
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(x)) → A1(x)

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule B1(b(x)) → A1(x) we obtained the following new rules:

B1(b(b(y_1))) → A1(b(y_1))
B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
QDP
                                              ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
A1(b(b(B(x)))) → B1(b(a(A(x))))
B1(b(b(y_1))) → A1(b(y_1))
B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
QDP
                                                  ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(x))) → B1(x)
A1(b(a(x))) → A1(b(b(x)))
B1(b(b(y_1))) → A1(b(y_1))
B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(a(x))) → A1(b(b(x))) at position [0] we obtained the following new rules:

A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(A(x0))))) → A1(b(A(x0)))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(B(x0)))) → A1(a(A(x0)))
A1(b(a(B(x0)))) → A1(b(A(x0)))
A1(b(a(x0))) → A1(a(a(a(x0))))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
QDP
                                                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(x0))) → A1(a(a(a(x0))))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(A(x0))))) → A1(b(A(x0)))
A1(b(a(x))) → B1(x)
A1(b(a(B(x0)))) → A1(a(A(x0)))
A1(b(a(B(x0)))) → A1(b(A(x0)))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
QDP
                                                          ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(x))) → B1(x)
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(B(y_0))))) → A1(b(b(B(y_0)))) at position [0] we obtained the following new rules:

B1(b(b(b(B(x0))))) → A1(b(A(x0)))
B1(b(b(b(B(y0))))) → A1(a(a(a(B(y0)))))
B1(b(b(b(B(x0))))) → A1(b(a(A(x0))))
B1(b(b(b(B(x0))))) → A1(a(A(x0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
QDP
                                                              ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
B1(b(b(b(B(x0))))) → A1(b(A(x0)))
B1(b(b(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(b(B(y0))))) → A1(a(a(a(B(y0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
B1(b(b(b(B(x0))))) → A1(a(A(x0)))
A1(b(a(x))) → B1(x)
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
QDP
                                                                  ↳ ForwardInstantiation
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(x))) → B1(b(x))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(x))) → B1(x)
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
B1(b(b(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule A1(b(a(x))) → B1(b(x)) we obtained the following new rules:

A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
QDP
                                                                      ↳ ForwardInstantiation
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(x))) → B1(x)
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
B1(b(b(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule A1(b(a(x))) → B1(x) we obtained the following new rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
QDP
                                                                          ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
B1(b(b(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule B1(b(b(b(B(x0))))) → A1(b(a(A(x0)))) at position [0] we obtained the following new rules:

B1(b(b(b(B(x0))))) → A1(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
QDP
                                                                              ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
B1(b(b(b(B(x0))))) → A1(A(x0))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
QDP
                                                                                  ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0)))))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(a(a(b(B(x0)))))) → A1(b(a(a(A(x0))))) at position [0] we obtained the following new rules:

A1(b(a(a(b(B(y0)))))) → A1(a(A(y0)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
QDP
                                                                                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(b(B(y0)))))) → A1(a(A(y0)))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
QDP
                                                                                          ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(B(x0))))) → A1(b(a(A(x0))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(a(b(B(x0))))) → A1(b(a(A(x0)))) at position [0] we obtained the following new rules:

A1(b(a(b(B(x0))))) → A1(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
QDP
                                                                                              ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(B(x0))))) → A1(A(x0))
A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
QDP
                                                                                                  ↳ Narrowing
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
A1(b(a(B(x0)))) → A1(b(a(A(x0))))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule A1(b(a(B(x0)))) → A1(b(a(A(x0)))) at position [0] we obtained the following new rules:

A1(b(a(B(x0)))) → A1(A(x0))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ Narrowing
QDP
                                                                                                      ↳ DependencyGraphProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(B(x0)))) → A1(A(x0))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ Narrowing
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ Narrowing
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ QDP
                                          ↳ ForwardInstantiation
                                            ↳ QDP
                                              ↳ DependencyGraphProof
                                                ↳ QDP
                                                  ↳ Narrowing
                                                    ↳ QDP
                                                      ↳ DependencyGraphProof
                                                        ↳ QDP
                                                          ↳ Narrowing
                                                            ↳ QDP
                                                              ↳ DependencyGraphProof
                                                                ↳ QDP
                                                                  ↳ ForwardInstantiation
                                                                    ↳ QDP
                                                                      ↳ ForwardInstantiation
                                                                        ↳ QDP
                                                                          ↳ Narrowing
                                                                            ↳ QDP
                                                                              ↳ DependencyGraphProof
                                                                                ↳ QDP
                                                                                  ↳ Narrowing
                                                                                    ↳ QDP
                                                                                      ↳ DependencyGraphProof
                                                                                        ↳ QDP
                                                                                          ↳ Narrowing
                                                                                            ↳ QDP
                                                                                              ↳ DependencyGraphProof
                                                                                                ↳ QDP
                                                                                                  ↳ Narrowing
                                                                                                    ↳ QDP
                                                                                                      ↳ DependencyGraphProof
QDP
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q DP problem:
The TRS P consists of the following rules:

A1(b(a(b(b(b(B(y_0))))))) → B1(b(b(b(B(y_0)))))
A1(b(a(a(a(x0))))) → A1(b(a(x0)))
A1(b(a(b(b(B(y_0)))))) → B1(b(b(b(B(y_0)))))
A1(b(a(b(y_0)))) → B1(b(b(y_0)))
B1(b(b(y_1))) → A1(b(y_1))
A1(b(a(b(b(y_0))))) → B1(b(b(y_0)))
A1(b(a(b(x0)))) → A1(b(a(a(a(x0)))))

The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We have reversed the following QTRS:
The set of rules R is

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

The set Q is empty.
We have obtained the following QTRS:

a(a(b(x))) → a(x)
a(b(a(x))) → b(b(a(x)))
b(b(x)) → a(a(a(x)))
B(b(x)) → A(x)
A(a(b(x))) → A(x)
A(b(a(x))) → B(b(a(x)))
B(b(b(a(x)))) → A(a(b(b(a(x)))))
B(b(x)) → A(a(x))
B(b(a(b(x)))) → A(a(a(x)))
B(b(b(x))) → A(a(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
QTRS
                  ↳ QTRS Reverse
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(b(x))) → a(x)
a(b(a(x))) → b(b(a(x)))
b(b(x)) → a(a(a(x)))
B(b(x)) → A(x)
A(a(b(x))) → A(x)
A(b(a(x))) → B(b(a(x)))
B(b(b(a(x)))) → A(a(b(b(a(x)))))
B(b(x)) → A(a(x))
B(b(a(b(x)))) → A(a(a(x)))
B(b(b(x))) → A(a(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))
b(B(x)) → A(x)
b(a(A(x))) → A(x)
a(b(A(x))) → a(b(B(x)))
a(b(b(B(x)))) → a(b(b(a(A(x)))))
b(B(x)) → a(A(x))
b(a(b(B(x)))) → a(a(A(x)))
b(b(B(x))) → a(A(x))

The set Q is empty.
We have obtained the following QTRS:

a(a(b(x))) → a(x)
a(b(a(x))) → b(b(a(x)))
b(b(x)) → a(a(a(x)))
B(b(x)) → A(x)
A(a(b(x))) → A(x)
A(b(a(x))) → B(b(a(x)))
B(b(b(a(x)))) → A(a(b(b(a(x)))))
B(b(x)) → A(a(x))
B(b(a(b(x)))) → A(a(a(x)))
B(b(b(x))) → A(a(x))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ Narrowing
        ↳ QDP
          ↳ QDPToSRSProof
            ↳ QTRS
              ↳ QTRS Reverse
                ↳ QTRS
                  ↳ DependencyPairsProof
                  ↳ QTRS Reverse
                  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

a(a(b(x))) → a(x)
a(b(a(x))) → b(b(a(x)))
b(b(x)) → a(a(a(x)))
B(b(x)) → A(x)
A(a(b(x))) → A(x)
A(b(a(x))) → B(b(a(x)))
B(b(b(a(x)))) → A(a(b(b(a(x)))))
B(b(x)) → A(a(x))
B(b(a(b(x)))) → A(a(a(x)))
B(b(b(x))) → A(a(x))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
QTRS
  ↳ QTRS Reverse

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))

Q is empty.

We have reversed the following QTRS:
The set of rules R is

a(a(b(x1))) → a(x1)
a(b(a(x1))) → b(b(a(x1)))
b(b(x1)) → a(a(a(x1)))

The set Q is empty.
We have obtained the following QTRS:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))

The set Q is empty.

↳ QTRS
  ↳ DependencyPairsProof
  ↳ QTRS Reverse
  ↳ QTRS Reverse
QTRS

Q restricted rewrite system:
The TRS R consists of the following rules:

b(a(a(x))) → a(x)
a(b(a(x))) → a(b(b(x)))
b(b(x)) → a(a(a(x)))

Q is empty.